If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 4x2 + -4x + 25 = 3x(x + -2) Reorder the terms: 25 + -4x + 4x2 = 3x(x + -2) Reorder the terms: 25 + -4x + 4x2 = 3x(-2 + x) 25 + -4x + 4x2 = (-2 * 3x + x * 3x) 25 + -4x + 4x2 = (-6x + 3x2) Solving 25 + -4x + 4x2 = -6x + 3x2 Solving for variable 'x'. Reorder the terms: 25 + -4x + 6x + 4x2 + -3x2 = -6x + 3x2 + 6x + -3x2 Combine like terms: -4x + 6x = 2x 25 + 2x + 4x2 + -3x2 = -6x + 3x2 + 6x + -3x2 Combine like terms: 4x2 + -3x2 = 1x2 25 + 2x + 1x2 = -6x + 3x2 + 6x + -3x2 Reorder the terms: 25 + 2x + 1x2 = -6x + 6x + 3x2 + -3x2 Combine like terms: -6x + 6x = 0 25 + 2x + 1x2 = 0 + 3x2 + -3x2 25 + 2x + 1x2 = 3x2 + -3x2 Combine like terms: 3x2 + -3x2 = 0 25 + 2x + 1x2 = 0 Begin completing the square. Move the constant term to the right: Add '-25' to each side of the equation. 25 + 2x + -25 + x2 = 0 + -25 Reorder the terms: 25 + -25 + 2x + x2 = 0 + -25 Combine like terms: 25 + -25 = 0 0 + 2x + x2 = 0 + -25 2x + x2 = 0 + -25 Combine like terms: 0 + -25 = -25 2x + x2 = -25 The x term is 2x. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2x + 1 + x2 = -25 + 1 Reorder the terms: 1 + 2x + x2 = -25 + 1 Combine like terms: -25 + 1 = -24 1 + 2x + x2 = -24 Factor a perfect square on the left side: (x + 1)(x + 1) = -24 Can't calculate square root of the right side. The solution to this equation could not be determined.
| (4x+5)*(9x-1)=0 | | c^3+125=0 | | 200-5t=36 | | 3t^3+20t^2+12t=0 | | 3t^2+20t^2+12t=0 | | 3t^3+13t^2+12t=0 | | 4a^2+23a+28=0 | | 1.469km=m | | i^444+i^456+i^462= | | 3r-2=23.2 | | 5r=76 | | -16h^3+48h^2y-36hy^2=0 | | 4w^2+20wt+25t^2=0 | | 8x+16x=16+x | | 5x+1x=3+x | | 25s^2-60st+36t^2=0 | | 8y+9x=25 | | 0.24y-0.2=0.14y+1-0.5y | | 9s^2-42s+49=0 | | 2y-2x=0 | | 4n-27=-12+9n | | x-0.7=8.44 | | 28p=-224 | | x^2-1.2x+0.36= | | v^2-16v+64= | | v^2+10v+25= | | x-75,2=13,7 | | x+1,7=11,7 | | 3x+10=20-4x | | b^2+36=0 | | 64b^2-81g^2=0 | | 2(3d-1)-5=5(d-1) |